Phase I/lla Study of the Safety and Activity of OpRegen® in Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration (AMD)

Allen C. Ho, MD

Wills Eye Hospital Attending Surgeon and Director of Retina Research Professor of Ophthalmology, Thomas Jefferson University Mid Atlantic Retina, Philadelphia, PA, USA

Abstract #3714956 Presentation #1862

OpRegen – A Suspension of Allogeneic RPE Cells With the Potential to Counteract RPE Cell Loss in GA

OpRegen

NIH-registered clinical-grade hESC cell line^a

Neural spheres with pigmented areas

Mature and functional RPE cells

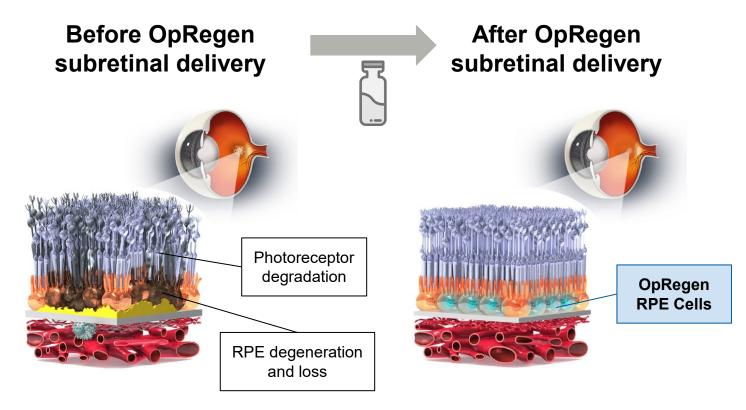
Utilizes a proprietary, large-scale, cGMP manufacturing process

^aNIH registry for hESC cell line HAD-C 102 available at https://grants.nih.gov/stem_cells/registry/current.htm?id=428.

OpRegen – A Suspension of Allogeneic RPE Cells With the Potential to Counteract RPE Cell Loss in GA

OpRegen

NIH-registered clinical-grade hESC cell line^a


Neural spheres with pigmented areas

Mature and functional RPE cells

Utilizes a proprietary, large-scale, cGMP manufacturing process

OpRegen has the potential to counteract RPE cell loss in areas of GA by supporting retinal structure and function

Phase I/IIa Study Design (NCT02286089) An Open-Label, Single-Arm, Multi-Center, Dose-Escalation Trial

Key Eligibility Criteria

Patients with bilateral GA secondary to AMD

Cohorts 1-3 (n=12):

- Legally blind (BCVA: ≤20/200)
- GA area: 1.25–17 mm²

Cohort 4 (n=12):

- Impaired vision (BCVA: ≥20/250 and ≤20/64)
- GA area: ≥4 and ≤11 mm²

Single OpRegen Administration

Cohort 1 (n=3) 50,000 cells

Cohort 2 (n=3) Up to 200,000 cells

Cohort 3 (n=6) Up to 200,000 cells

Cohort 4 (n=12) Up to 200,000 cells

Objectives & Follow-up

Primary and secondary objectives assessed at 12 months following OpRegen subretinal delivery; patients followed for up to 5 years

Primary Objective:

 To evaluate the safety and tolerability of OpRegen following subretinal delivery

Secondary Objective:

 To evaluate the potential activity of OpRegen by assessing changes in visual function and retinal structure

Phase I/IIa Study Design (NCT02286089) An Open-Label, Single-Arm, Multi-Center, Dose-Escalation Trial

Key Eligibility Criteria

Patients with bilateral GA secondary to AMD

Cohorts 1-3 (n=12):

- Legally blind (BCVA: ≤20/200)
- GA area: 1.25–17 mm²

Cohort 4 (n=12):

- Impaired vision (BCVA: ≥20/250 and ≤20/64)
- GA area: ≥4 and ≤11 mm²

Single OpRegen Administration

Cohort 1 (n=3) 50,000 cells

Cohort 2 (n=3) Up to 200,000 cells

Cohort 3 (n=6) Up to 200,000 cells

Cohort 4 (n=12) Up to 200,000 cells

Objectives & Follow-up

Primary and secondary objectives assessed at 12 months following OpRegen subretinal delivery; patients followed for up to 5 years

Primary Objective:

 To evaluate the safety and tolerability of OpRegen following subretinal delivery

Secondary Objective:

 To evaluate the potential activity of OpRegen by assessing changes in visual function and retinal structure

Subretinal Delivery Via:

- Vitrectomy/retinotomy (n=17)
- Suprachoroidal cannula using Orbit SDS[®] (Gyroscope Therapeutics) in Cohort 4 only (n=7)

Perioperative Immunosuppressive Regimen:

- Tacrolimus 0.01 mg/kg daily administered until up to 6 weeks after surgery
- Mycophenolate up to 2.0 g daily administered until at least 3 months after surgery

Baseline Characteristics and Study Follow-up Greater Disease Severity in Cohorts 1-3 Versus Cohort 4

Baseline Characteristic	Cohorts 1-3 (n=12) Legally Blind	Cohort 4 (n=12) Impaired Vision
Age, years, mean (SD / min–max)	78.1 (±8.2 / 64.8–92.2)	75.7 (±8.1 / 60.0–87.7)
Sex, female male, n	7 5	6 6
Study Eye BCVA ^a , letters, mean (SD / min–max)	23.5 (±11.7 / 0–39) [24 letters ≈ 20/320]	44.8 (±7.5 / 28–54) [45 letters ≈ 20/125]
Study Eye GA Area ^b , mm ² , mean (SD / min–max)	12.7 (±6.7 / 6–30)	7.4 (±2.9 / 1.4–11)
Study Follow-up, months, mean (min–max)	41.4 (9.3–56.8)	18.9 (11.5-35.1)

^aThe worse eye based on BCVA was selected for OpRegen subretinal delivery. ^bBased on central grading of fundus autofluorescence imaging. Data cutoff: 18 Jan 2022.

Baseline Characteristics and Study Follow-up Greater Disease Severity in Cohorts 1-3 Versus Cohort 4

Baseline Characteristic	Cohorts 1-3 (n=12) Legally Blind	Cohort 4 (n=12) Impaired Vision
Age, years, mean (SD / min–max)	78.1 (±8.2 / 64.8–92.2)	75.7 (±8.1 / 60.0–87.7)
Sex, female male, n	7 5	6 6
Study Eye BCVA ^a , letters, mean (SD / min–max)	23.5 (±11.7 / 0–39) [24 letters ≈ 20/320]	44.8 (±7.5 / 28–54) [45 letters ≈ 20/125]
Study Eye GA Area ^b , mm ² , mean (SD / min–max)	12.7 (±6.7 / 6–30)	7.4 (±2.9 / 1.4–11)
Study Follow-up, months, mean (min–max)	41.4 (9.3–56.8)	18.9 (11.5-35.1)

^aThe worse eye based on BCVA was selected for OpRegen subretinal delivery. ^bBased on central grading of fundus autofluorescence imaging. Data cutoff: 18 Jan 2022.

Safety Summary OpRegen Was Well Tolerated With an Acceptable Safety Profile

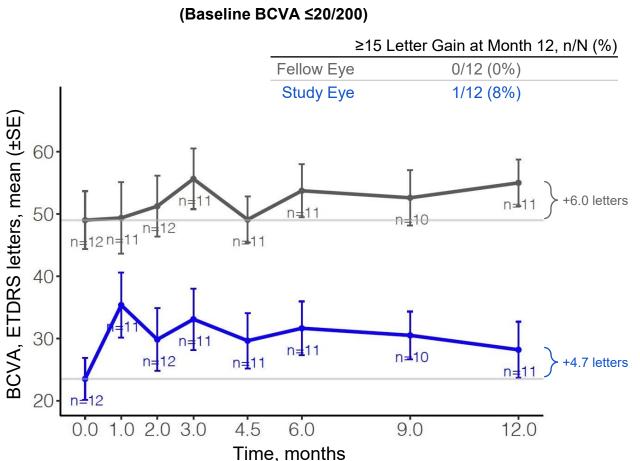
- All 24 (100%) treated patients reported ≥1 AE and ≥1 ocular AE
 - Most frequent systemic AE: URTI (n=7)
 - Most frequent ocular AEs: conjunctival hemorrhage/hyperemia (n=17) and ERM (n=16)
- The majority of AEs reported (Cohorts 1-3, 87%; Cohort 4, 93%) were mild
- No cluster of AEs related to immunosuppressive regimen were reported
- One patient discontinued due to an AE (stage IV lung adenocarcinoma unrelated to treatment)
- No cases of rejection following OpRegen subretinal delivery have been reported
- No acute or delayed intraocular inflammation, or sustained intraocular pressure increase observed
- Interpretations of the data are limited by the small dataset and the single-arm nature of this study

Ocular AEs With OpRegen Mainly Related to the Surgical Procedures for Subretinal Delivery

Ocular AEs Occurring in ≥2 Patients, n (%)	Cohorts 1-3 (n=12) Legally Blind Vitrectomy (n=12)	Cohort 4 (n=12) Impaired Vision Vitrectomy (n=5) Orbit SDS (n=7)
Conjunctival hemorrhage / hyperemia	9 (75%)	8 (67%)
ERM (macular fibrosis) ^a	10 (83%)	6 (50%)
Clinically significant ERM ^b	1 (8%)	2 (17%)
Cataract	8 (67%)	1 (8%)
RPE detachment	1 (8%)	5 (42%)
Retinal hemorrhage	1 (8%)	5 (42%)
Subretinal fluid	5 (42%)	2 (17%)
Persistent subretinal fluid (>2 weeks)	0	1 (8%)
Choroidal neovascularization (CNV) / neovascular AMD	1 (8%)	3 (25%)
Retinal detachment	1 (8%)	1 (8%)
Retinoschisis	1 (8%)	2 (17%)

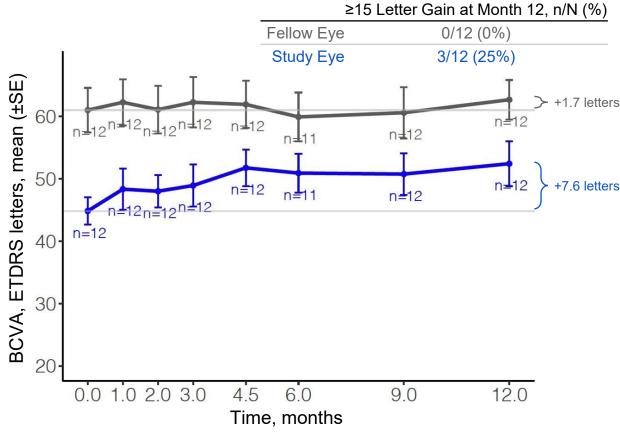
^a7/12 (58%) patients in Cohorts 1-3 and 5/12 (42%) in Cohort 4 had ERM at baseline; 6/10 patients with a reported ERM AE in Cohorts 1-3 and 2/6 in Cohort 4 had pre-existing ERM. ^bClinically significant indicates ERM requiring surgical intervention.

Data cutoff: 18 Jan 2022.

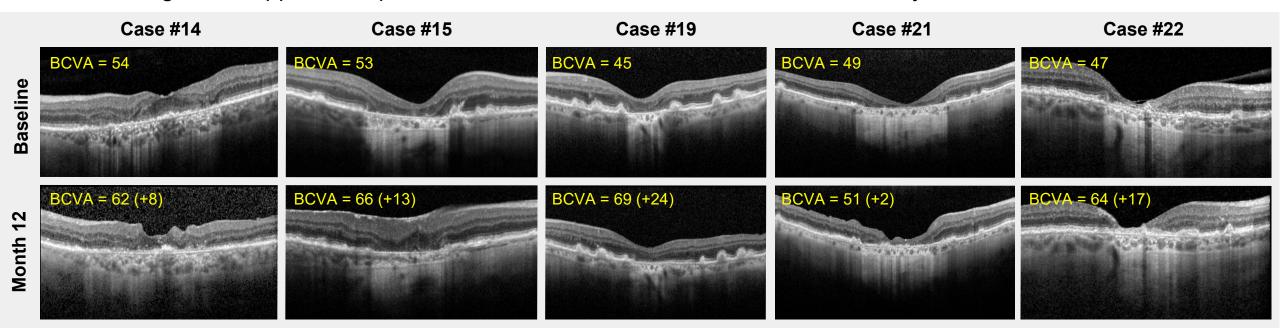

Ocular AEs With OpRegen Mainly Related to the Surgical Procedures for Subretinal Delivery

Ocular AEs Occurring in ≥2 Patients, n (%)	Cohorts 1-3 (n=12) Legally Blind Vitrectomy (n=12)	Cohort 4 (n=12) Impaired Vision Vitrectomy (n=5) Orbit SDS (n=7)
Conjunctival hemorrhage / hyperemia	9 (75%)	8 (67%)
ERM (macular fibrosis) ^a	10 (83%)	6 (50%)
Clinically significant ERM ^b	1 (8%)	2 (17%)
Cataract	8 (67%)	1 (8%)
RPE detachment	1 (8%)	5 (42%)
Retinal hemorrhage	1 (8%)	5 (42%)
Subretinal fluid	5 (42%)	2 (17%)
Persistent subretinal fluid (>2 weeks)	0	1 (8%)
Choroidal neovascularization (CNV) / neovascular AMD	1 (8%)	3 (25%)
Retinal detachment	1 (8%)	1 (8%)
Retinoschisis	1 (8%)	2 (17%)

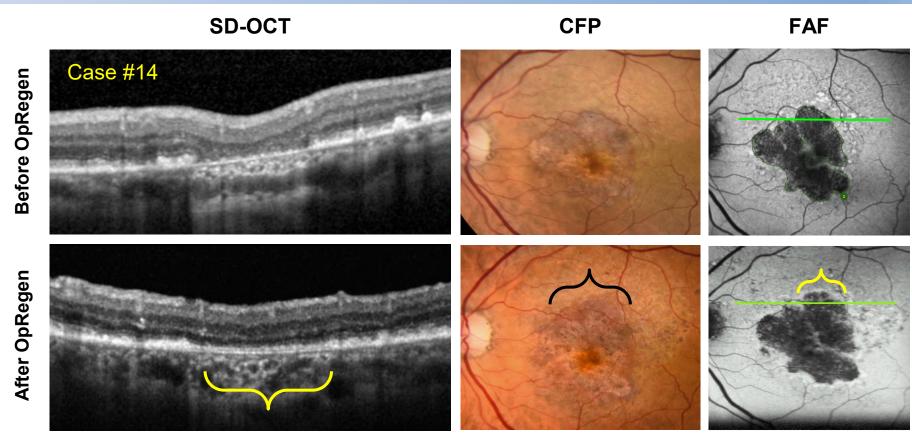
^a7/12 (58%) patients in Cohorts 1-3 and 5/12 (42%) in Cohort 4 had ERM at baseline; 6/10 patients with a reported ERM AE in Cohorts 1-3 and 2/6 in Cohort 4 had pre-existing ERM. ^bClinically significant indicates ERM requiring surgical intervention.


Data cutoff: 18 Jan 2022.

Preliminary Evidence of Visual Function Improvements Average 7.6 Letter Gain and 25% of Patients With ≥15 Letter Gain in Cohort 4

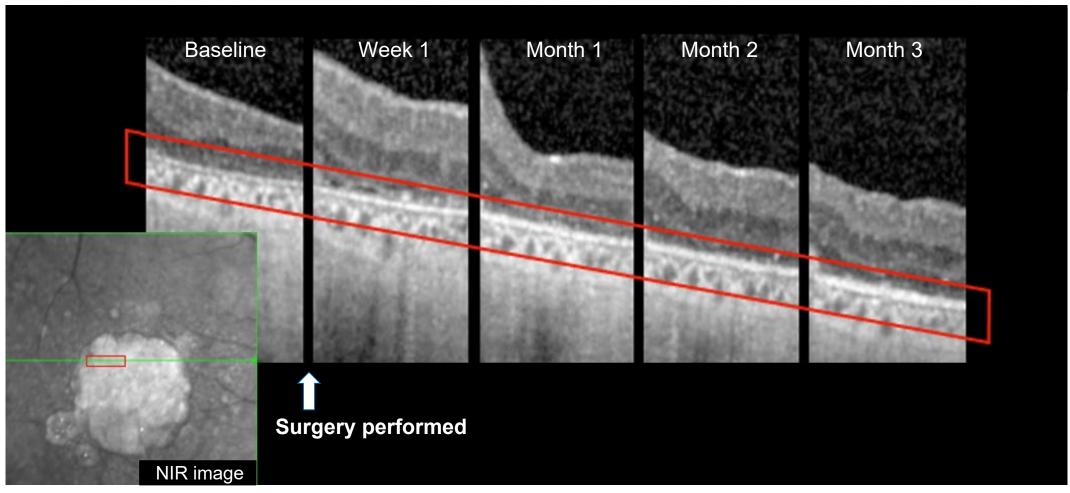

Cohorts 1-3

Cohort 4
(Baseline BCVA ≥20/250 and ≤20/64)



Subretinal Delivery of OpRegen to GA Area and Fovea Greater Visual Function Gains With Areas of Outer Retinal Structure Improvement

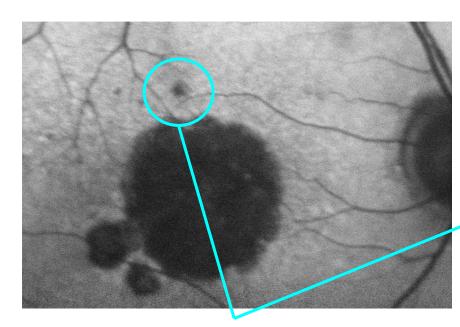
- Five patients in Cohort 4 had OpRegen delivered to most or all of the GA area, including the fovea
 - These 5 patients had greater gains in visual function (average 12.8 letter gain), with evidence for regions of apparent improvement of outer retinal structure as assessed by SD-OCT


Assessment of GA Following OpRegen Delivery Advantages of SD-OCT versus Fundus Autofluorescence (FAF) Imaging

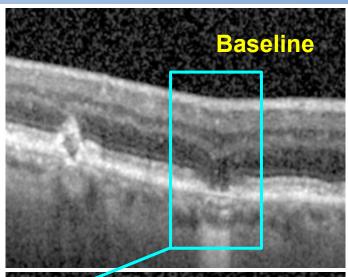
- Increased hyperreflectivity at RPE/Bruch membrane with resolution of cRORA features
- Increased pigmentation in areas of prior GA
- Persistence of hypoautofluorescence

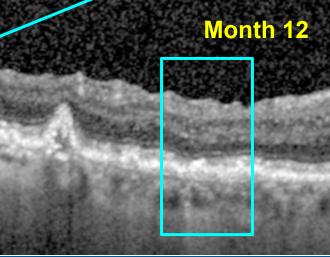
- The allogeneic hESCderived RPE cells in OpRegen are young and have low lipofuscin content
- Therefore, OpRegen RPE cells are not expected to be readily detectable by standard FAF following subretinal delivery

Greater Hyperreflectivity Visible at RPE/Bruch Membrane SD-OCT Imaging Suggests OpRegen Presence in Areas of Former GA



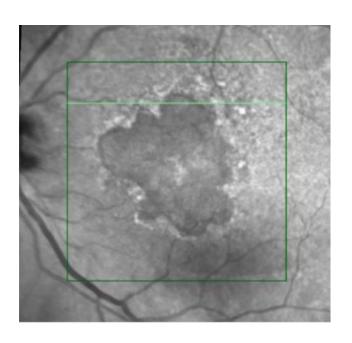
Adapted from slide courtesy of Brandon Lujan, MD.

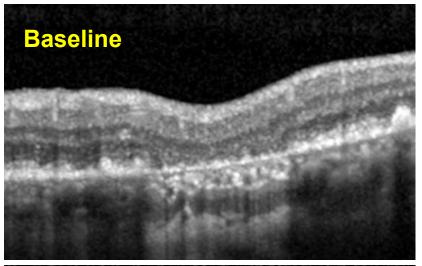

Examples of Improvements in Outer Retinal Structure by SD-OCT In Cases With OpRegen Delivery to the Area of GA

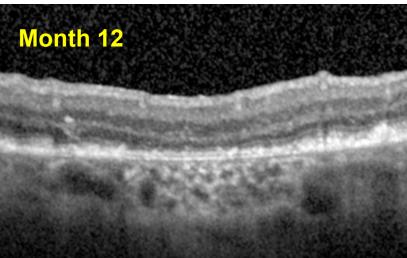

Resolution of iRORA

Case #21

Area of hypoautofluorescence on FAF at baseline with features of iRORA on SD-OCT




- Focal disruption of the RPE layer, choroidal hypertransmission, and outer retinal subsidence at baseline are no longer present at month 12
- Registration of scans is confirmed by presence of a prominent druse and by choroidal vascular markings


iRORA, incomplete RPE and outer retinal atrophy.

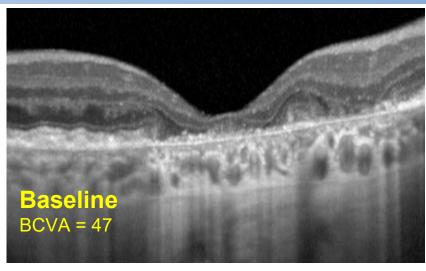
Examples of Improvements in Outer Retinal Structure by SD-OCT In Cases With OpRegen Delivery to the Area of GA

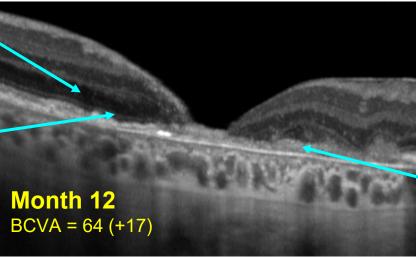
Resolution of cRORA near borders of baseline GA

At month 12, compared with baseline:

- Features of cRORA no longer present
- Greater hyperreflectivity at the level of RPE/Bruch membrane
- Less choroidal hypertransmission
- Resolution of retinal subsidence, with greater continuity of outer retinal layers

Similar features also seen at nasal, superior, and inferior borders of GA in this case


Examples of Improvements in Outer Retinal Structure by SD-OCT In Cases With OpRegen Delivery to the Area of GA


Outer retinal layer improvement near the foveal center

Case #22

Hyporeflective layer continuous with **outer nuclear layer** at scan margins extends more centrally

Hyperreflective layer continuous with **external limiting membrane** also extends more centrally

Greater hyperreflectivity at the level of RPE/Bruch membrane

Summary and Future Directions

- 12-month primary endpoint data from this Phase I/IIa study suggest that OpRegen is well tolerated with an acceptable safety profile and mostly mild AEs
- The ocular AEs observed with OpRegen were mainly related to the surgical procedures used for subretinal delivery
- Preliminary evidence of outer retinal structure and visual function improvements with OpRegen was observed in patients with GA and impaired vision (Cohort 4 [n=12])
 - SD-OCT imaging analysis is ongoing
- These data support the potential for OpRegen to slow, stop, or reverse disease progression in GA
- Further assessment of the optimal disease stage for intervention, surgical procedure for subretinal delivery, and target delivery location of OpRegen in a larger, controlled clinical study is needed to confirm these preliminary findings

Thank You to All Participating Study Sites, Investigators, and Patients!

Investigators

- Adiel Barak, Sourasky Medical Center, Tel Aviv, Israel
- David Boyer, Retina Vitreous Associates Medical Group Los Angeles, CA, USA
- Rita Ehrlich, Rabin Medical Center, Petah Tikva, Israel
- Allen C. Ho, Wills/MidAtlantic, Philadelphia, PA, USA
- Tareq Jaouni, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Richard McDonald, West Cost Retina Group, San Francisco, CA, USA
- Christopher D. Riemann, CEI, Cincinnati, OH, USA
- David Telander, Retinal Consultants Medical Group, Sacramento, CA, USA

Additional Co-Authors

- Eyal Banin, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Jordi M. Monés, Institut de la Màcula, Barcelona, Spain
- Benjamin Reubinoff, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- · Gary S. Hogge, Lineage Cell Therapeutics, Inc., Carlsbad, CA, USA
- Avi Ben Shabat, Lineage Cell Therapeutics, Inc. (Cell Cure Neurosciences, Ltd.), Jerusalem, Israel

Trial Conduct

- Jessica Hallinan, Lineage Therapeutics, Inc., Carlsbad, CA, USA
- Joyce Velez, Lineage Therapeutics, Inc., Carlsbad, CA, USA
- Diana Angelini, Lineage Therapeutics, Inc., Carlsbad, CA, USA
- Yana Aisen, Lineage Therapeutics, Inc., Carlsbad, CA, USA

Imaging Analysis

- Central Reading Center: Merit CRO (EyeKor), Madison, WI, USA
- OCT and GA progression analyses: Jordi M. Monés, Institut de la Màcula, Barcelona, Spain
- Supplemental OCT Analyses: Brandon Lujan, Lujan Imaging LLC, Portland, OR, USA
- Doheny Image Reading and Research Lab (DIRRL)

Additional Review and Data Analysis

Genentech Inc., South San Francisco, CA, USA